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ABSTPACT

*'The structure of second-order processes is exposed by
specification of whitening filters and modeling filters, or
equivalently by Cholesky decompositions of the covariance matrix

*and its inverse. We shall show that these filters can be obtained as
a cascade of lattice sections, each specified by a single so-called
reflection coefficient parameter. For stationary processes, the
reflection coefficient will be time-invariant. For nonstationary
processes we can use the displacement rank concept either to find
a simple time-update formula for the reflection coefficients or to
replace them by a time-invariant vector reflection coefficient of
size governed by the displacement rank of processes.

These results are obtained in a quite direct way by using a
geometric (Hilbert-space) formulation of the problem, combined
with old results of Yule (1907) on update formulas for partial
correlation coefficients and of Schur (1917) and Szego (1939) on
the classical moment problem.
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1. INTRODUCTION

In recent years there has been considerable interest in lattice filters for

signal processing. Though such structures had been well studied in network

theory as, for example, in the wave digital filters of Fettweis (see, e.g., Fettweis

et al. (1974)) and especially in the cascade synthesis of multiport networks

(Dewilde (1969)), the first applications in on-line adaptive signal processing were

apparently made by Itakura and Saito (1971) in the field of speech analysis. Lat-

tice filter models were also familiar in geophysical signal processing as 'layered

earth models' (see, e.g., Robinson (1967)); Burg ((1970), unpublished) explicitly

suggested lattice filter models for the implementation of a spectral estimation

technique based on the maximum _ntropy principle (Burg (1967). see also Alam

(1978)). The lattice filters used in these works were based on the assumption of

an underlying stationary process, and though in fact the filters were applied to

deterministic and nonstationary processes, it was believed that then the lattice

solutions were suboptimal (see e.g., Makhoul (1977)). Morf and Vieira (see Morf,

Vieira and Lee (1977). Vieira (1977)) were the first to show that the optimal solu-

tions to certain (so-called prewindowed) nonstationary model fitting problems

could be obtained in lattice form, though with time-variant lattice parameters

(reflection coefficients). These lattice filters demonstrated excellent tracking

capability and rapid convergence (see, e.g.. Morf and Lee (1978) (1979). Satorius

and Pack (1981). Hodgkiss and Presley (1981)). A recent thesis by Lee (1980)

and a paper by Lee, Morf and Friedlander (1981) present a number of efficient

normalized versions of the prewindowed lattice (which they call ladder) algo-

rithms. A forthcoming paper by Porat, Friedlander and Morf (1982) presents a

similar comprehensive analysis of the so-called "covariance" lattice algorithms.

In Section 3 of this paper we shall show that these results on the pre-

windowed and covariance algorithms can be embedded into a more general

_ I I'I I -2-
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theory of time-variant lattice filters for nonstationary stochastic processes. We

shall start in Section 2 by showing that lattice filters can be set up for determin-

ing the innovations of any (second-order) process; however, the computational

effort is O(N 3), where N is the number of observed random variables, and this

is the same as for any other method (e.g., direct Gram-Schmidt orthogonaliza-

tion) of determining the innovations. Of course, the lattice structure has vari-

ous advantages: modularity, local interconnections, simple checks for stability,

reduced sensitivity to parameter and roundoff errors. We may note that some of

these nice properties arise from the fact that the lattice algorithms are a form

of Modified Gram-Schmidt algorithm, which is known to have better numerical

properties than the direct Gram-Schmidt procedure (see, e.g., Stewart (1973)).

However, our major point is that order of magnitude reductions in the computa-

tional burden can be obtained by introducing the concept of displacement rank

as a measure of nonstationarity; in particular, we shall use the displacement

rank to obtain a general time-update formula for the reflection coefficients. The

derivation is quite direct and elegant, calling upon an old identity, due to Yule

(1907), on partial correlation coefficients and a geometric characterization, due

to Delosme and Morf (1980), of displacement rank via so-called "pinning vec-

tors", which were introduced by Sidhu and Kailath (1975) in connection with the

Chandrasekhar equations (Kailath (1973), Kailath. SidhuMorf (1973)). While

inputs from a number of people (especially D. T. L. Lee, M. Morf, D. R. Morgan, J-

M. Delosme) contributed to the development, our presentation follows one put

together by H. Lev-Ari, and to appear in his thesis (Lev-Ari, (1982)).

In the final section of this paper, we shall show how the displacement rank

can be exploited to obtain a different kind of simpliflcation-a time-invariant lat-

tice filter but with somewhat more complicated sections, having a-l delays

per section rather than just one, where a is the displacement rank. This result

-3-



was first obtained as a consequence of the generalized Levinson algorithm

derived by Friedlander et al. (1978), (1979). The original derivation was quite

lengthy and relied heavily on insights from the state-space Chandrasekhar equa-

tions; in the meantime, through contributions from Dewilde, Vieira, Porat, Genin,

Delosme, Dym and others, and especially Lev-Ari, a much clearer view has

emerged. Certain classical results of Schur on tests for the positivity of moment

matrices, when combined with the displacement rank concept, turn out to pro-

vide a simple, yet general and insightful, view of the topic. We shall present an

outline of this approach in Section 4, while a detailed exposition and further

results will appear in the thesis of H. Lev-Ari (1982).

For
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Z AfITICE RECURSIONS FOR GENERAL NONSATIONARY PROCESSES

We shall be studying an indexed (by time) collection of "vectors"

|yA, i=O .. t.... ] in some Hilbert space, with given inner products

<yt.yj> = Ri (I

and such that the Gramian matrix

R = [R1 ] (2)

is a symmetric positive definite matrix. We generally have in mind that the yj

are random variables in a probability space where the inner product is defined

by expectation,

<yjyj> = Elyi •

where the asterisk denotes complex conjugation (or Hermitian transpose,when

applied to matrix quantities). However, this stochastic interpretation is not at

all necessary.

We shall denote

I Ix 1I I:= <Y,-Y>

and shall use bars to denote normalized quantities, e.g.,

Vi = 11% 1 l-1i •(3)

The structure of the collection of vectors yj will be explored by studying

the family of finite-order residuals

em.t Y1 Y8 - VJlJ (4)

where

U = I,-m.....t-1I (5)

and

-5-



y I = the projection of yt on the

space spanned by the set U . (6)

We shall call

emt = the m-th order forward residual at time t (7)

We note that the residuals

eg.s . t = 0.1.2....

will be the so-called innovations process associated with the Jyg,t=0,1....] which

is usually the chief object of attention in least-squares estimation theory; to

obtain lattice filters, however, it is convenient to imbed these desired quantities

in the larger family of residuals memg, ,n<t, t =0,1...].

The structure of this family can be exposed by first seeking, for each fixed

t, how to determine order-updates of these residuals, i.e., knowing em.g we shall

try to determine

em+1,s = lt - Yt 1 Vt..1t---

in some convenient way. It is reasonable to seek to use our knowledge of em.t

by making the orthogonal decomposition

where

rm.t-1 := Y-t-M1 - Yt-M-it, (B)

the m-th order backward residual at t - m - 1

Then we can write

S' IIJY,_ _,M11  Y IJ + , 9I.1.,_,

S I VJ + <YC.,.8-,>. -I.(9)

It follows that we can write

-6-
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em+I.t =ems - <jFjjf~~

=emt - <em t.TFMt1->fMt-l

- I e m.t I I(m.t - <Wm.t,fm..I>fm.g-,)

= I em.t IF(im.g km+ I.t-fm.,-)

where we used the fact that rm.t- - U to obtain the second equality, and where

we defined

km+i.t <i.g,fmgg-> (10)

For reasons given later, such quantities will be called "reflection coefficients".

To also normalize em,+i.t, we need to compute its norm, for which we note

that the last equality yields

iem+., 2 = I lem.l(s - kms,,i k-.)I Iem.tm "

so that

em+,.,ll = lli.sl (1-km+i.g,g .g)" 2  (11)

Then we can rewrite the order-update formula for the forward residuals in nor-

malized form as

Wmilt I km*1Ijk7+j.t)-L/2 (@*m. - kmn+,tg- ) (12)

This, of course, leaves us with the problem of getting fm.t-*. But a similar

recursion can be set up for it. Thus and more briefly, we can write

r.t= 1/--I -i -Ml- -I J.l
= T'm.-1 - -lltnl@l~

= IT,.l I(#.*-i-.)

= I Irm.t -1 (fm.-1 k i~.i.im.i)

This yields

I hrmti.s I I I I'.J-lI I (I - ki+,gk.+i.j) / 2

so that

-- 7
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?m~l = I -ki~+tkmi*)'
2 (mt-i- k~itmt)(13)

The recursions (12) and (13) can be pictorially represented as in Figure 1(a) as

a typical "lattice" section. Moreover, we see that we can put the sections

together as in Figure 1(b), to get a cascaded structure, with each lattice section

specified by a reflection coefficient,

k = ,. m= 0.1'.

FIgure 1(a). Lattice Section

+ + - et *** I

:1 ~~+ -... P+

kiwt

FIgure 1(b). Lattice FIlter with imue-Varying Sections
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Note that the inputs to the first section are

Wo.t =  t = [IIYII- = o.j (14)

and that the first section has reflection coefficient

<-0t .f0.t -> = <t.yt-1> = - (15)

The name reflection coefficient is partly justified by the fact that, by

Schwarz's inequality,

I Ik .,a I I <  I Ie.:! .s,,-,ItI"- 1 . (16)

The Stationary Case

A more detailed justification is obtained from closer study of the "station-

ary" case. where stationarity means that the inner products are invariant under

shift in the indices, i.e..

<yj,yj> = <Yi_,Yj_>, i = 1,2.... (17)

In this case, it follows that the reflection coefficients km+, are independent of

t, so that we have a cascade lattice filter with constant or time-invariant sec-

tions. Physical realizations of such time-invariant filters (and in particular of

their inverses) have been studied in some detail in geophysics (see, e.g., Robin-

son (1967), Claerbout (1976)), and in speech analysis (see, e.g., Wakita (1973),

Markel and Gray (1976)), and provide the real justification for the name

reflection coefficients. We shall not pursue this further here, but may refer to

Paper No. by Benveniste earlier in this volume.

mplifications in the Nonstationary Case

In the nonstationary case, when (17) does not hold, it seems unavoidable

that the reflection coefficients must be time-variant. However, it is reasonable

that the complexity of the time-variation should depend upon the degree of non-

staUonarity, measured in some sense. It turns out that the concept of

.9-



displacement rank provides a meaningful way of classifying nonstationary

processes. in that for a process with displacement rank a, each reflection

coefficient can be updated with O(a) multiplications. For N observations and

N reflection coefficients, this requires O(N 2 a) multiplications as compared to

the O(N s ) that would be required if we just used the general formulas given

above without attention to the displacement rank.

The time-update formulas can be compactly stated:

kmlit = (1 - 77jmg 1 2 km.tilptj-/ g~)1 ~~pg (18)
k.pn+ + .- ,--.tg/ .t 0 /  + 7,.9 4 .- 1

where Ji7,gi are a-dimensional row vectors obeying the recursions (Yule's Par-

cor identity)

77m+,g= F?7mZ.t ,y+1.g,/im _.-i (19)

= F . _ , .,7) .j I(20)

where the function F() is defined as

FJA.B,C i = (1 - BB )-(A - BC)(i - C' 2  (21)

In fact, we may note that the first equation is a rearrangement of the formula.

km+i.t-1= F}kmx.-11..tAm. tJ (22)
(I - 7")-"(k,,+I., - ?')(I -/ ,)-12

where the subscripts for A and 77 have been omitted for simplicity.

The displacement rank itself is given as

a = rank of JR - ZRZ*J (23)

where R is the covariance or Gramian matrix (2) and Z is the lower shift

operator with ones on the first subdiagonal and zeros elsewhere.

The three recursions (18)-(20) can be pictorially represented as in Figure 2.

The block named D denotes a "delay operator" and the numbers indicated

denote implementation of the respective equations.

- 10-



Figure 2. Representation of the Time-Update Calculations

Time-Invariant Implementations

Perhaps surprisingly, the displacement rank can be used to reduce the

complexity in a different way--by allowing completely time-invariant gains but of

a higher dimension. That is, we shall still have a cascade of lattice sections. but

each section will be defined by an (a-l)-dimensional row vector rather than a

scalar-see Figure 3. These row vectors will be called generalized Schur

coefficients.

-I11-



FIgure 3. Generalized Time-Invariant Lattice Section

As shown, the input to the 'Delay' is a (a-1)xl signal; the 'Delay' itself is

Z-11.-_, where Ia-, denotes an identity matrix of dimension (a-1)x(a-1). It

can be replaced by /.- -a . xI1_11 to yield an ARMA lattice structure. Thel 1-aj;z

generalized Schur coefficients J/j are row vectors of dimension a-1, satisfy-

ing

i - Y4JI'! 0 (24)

where a is the displacement rank of the covariance matrix R of and J is

defined through the signature of R as:

sgnJR - Z RZ' 1,-J (2)

-12-
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Thus J is an (a-1)x(a-1) diagonal matrix with entries +1 or -1. Relation

(24) can be compactly written by using the J-norm notation:

To conclude this introduction, we should also remark that we shall show

that the generalized Schur coefficients lj4I are not unique: different set of

JIKJ can be associated with a given covariance function, even in the stationary

case!

Also, a given set of JIK4 can correspond to several different covariance

functions, all "congruent" to each other (see Section 4).

- 13-



3. DERIVATION OF THE TIME-UPDATE FORMULAS

The time update formulas (18)-(20) will follow very easily by combining cer-

tain results on partial correlation coefficients and on displacement ranks. These

will be presented in the first two subsections. The third subsection will contain

the proofs of (18)-(29) and the final subsection will give an application to the so-

called exact deterministic least-squares algorithm for "pre-windowed" data

sequences.

3.1 Parcor Coefficients andYule's Identity

The reflection coefficients as defined by (10) can be identified as partial

correlation (Parcor) coefficients. Before proceeding with their analysis, it will

be helpful to introduce some notation and derive some general properties of

such coefficients.

Let a.b be vectors in some Hilbert space. We shall denote the correlation

coefficient of a and b as

p(a,b) = <(,2>= l)all - I <a,b>- jib 11- 1

where =I a I I- 'a is the normalized version of a. Given any set V of vectors,

let l v, or more simply av, denote the residual error in estimating a from V.

Thus

av:= a - <aP>V (27)

where V is any orthonormal basis for the linear space spanned by the set V.

Then, we shall define the partial correlation coefficient of Ja,bj given V, a

concept first introduced by Yule (1907), as

pv(a,b) = p(dy.v)
= I Ivl 1<avbV>I IbvI- (28)

In this notation, the reflection coefficient km+ Ui defined in (10) can be written

- IA-



as,

km +I.= p v(Yt, Y,-1) (29)

where we recall that (cf. (5))

U=yg-,.

We can write

av = a -<a, /V> T

= Ia I I (l-- <(,P>P)
= I llI (d -p(a.,VP)

and check that

IIavIl = IIaM . (I -p(aV)p(ca,V))" 2

so that

IV = I lavI 1 v

= (I- p(a. V)p*(a. /))- 2 (d - p(a. 1) )

With a similar expression for gy, we can then deduce that

pv(a.b) = p(av.bv) = <UV,6v>

= (I -p(a,.)p'(a.V))-'/<( -p(aV)P).( 6 -p(b.V)V)>

* (I -p(b.V)p'(bV)) - '/ 2

= (I -p(. V)p(a, V))-" 2 (p(a,b) - p(a, V)p'(b, V))(I - p(b, V)p'(b. V)) - ' 2

(30)

or more compactly

pv(ab) FjA.B,Cj

(I - BH11) " 2(A - BC')(I - CO)-*'2  (31)

where

A =p(a.b) ; B =p(.V); C=p(b.V).

Now we shall seek a formula for modifying a partial correlation coefficient

-15-
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p!,(a.b) whenthe set U is changed to IU. V

For this, note first that the space spanned by j U. Vj can be written as a

direct sum =U S Vvj. where Vrj is orthogonal to U. Now a, vy can be com-

puted as follows:

First estimate a from U. with error av; then estimate av, from VV1.

with final overall error of (ai)v,. Therefore we have a nice formula, which the

reader should thoroughly assimilate:

aivj, =(aJ)v,

Then we can write.

p..vy(a.b) = p(al,.vi.bvb.Vl)

= p((a j)v,,(b V) v)
= pv,(av~b ,V)

which by using (31), we can write as

p, j.vl(a.b) = pv,(a,.b ,)

= Fjp(ar,,b v,).p(a .VV).p(b V. Vy)j

= flprj(a.b).pV,(a.V).pV,(bV) (32)

This basic result first appeared (in different notation) in Yule's original paper

(1907) and therefore we shall call it Yule's Parcor Identity.

3.2 Displacement Ranks. Differential Generators, and
Pinning Aggregates

We turn now to the other key ingredient of the time-update formula. Let us

denote

Raw ja where = <yi.yj> (33)

If we define a block column vector

-18-



YoN : [YoYi ..... (34)

then we can write

ROW = <Y o.',Y O> (35)

Now we introduce the displacement operator

-RON Ro. - Z Rc-,vZ" (36a)

where

0
1. 0

Z =(36b)

0 0

The displacement rank is defined as

R= rank(_ R) (37)

Since RO.W is Hermitian, so will be -JRC.N. Therefore, it has real eigenvalues.

say q, strictly positive, and q_ strictly negative, so that

a = q, + q- (38)

Then we can write --4RON, although nonuniquely, as

Ro:N - Z RoN Z = Go,; 2 G:N (39)

where

0 =(40)

and

go

GO:= (41)

-17-



(GO.N,E) will be called a 'Diflerential Generator' of Rcy. since it is not hard to

see that RON can be uniquely recovered from knowledge of GO.N.E.

An interesting geometric interpretation can be associated with (39). rewrit-

ten as
Ro:N-GO.,v . Z RZ (42)

Delosme and Morf (1980) showed that we could find a collection, X. of vectors,

a in number, in an extended Hilbert space, such that

<X.X> = E and Go_v = <Yo:N,X> (43)

We may remark that such so called "pinning aggregates" were first introduced

by Sidhu and Kailath (1975) to obtain a geometric derivation of the state-space

Chandrasekhar equations.

Now, in terms of X, we can express (4?) in the suggestive form,

<Yo:N.YON> - <YO:NX><X.X>-'<YC'N,X>o = <Z YO:,,Z YC:N> (44)

For, noticing that the residual

(Yo:N)x = Yo. - <YC..%,X><XX>-'X

equation (44) shows that

<(Yo:N)X,(YO:N)X> = <Z Y 0 .vZ YC:N> (45)

This equality allows us to set up an isometry (i.e., a norm-preserving iso-

morphism) between the spaces

ispace of vectors (Yo.N)xj - ispace of Z Yogj (46)

In particular, we have

(Yo)x - 0 and (yt)x -y-Y-1 (47)

Now returning to our problem, we recall that

- 18-



=p[(,t),J,(Y,-,,,-,).,]
= V (Vt = Vt

where

It will be convenient to introduce an operator D such that

Pyjt = Yt,-I, t ;:- I . (4.8a)

DU = /yt,_n_..i...yjj (48b)

With this notation, what we are seeking in the time update formula is a relation

between

kmin,. = p:/(yg.!y-m-) and km+j... = pDJ(Dy*,DytD--) (49)

3.3 Derivation of Tme-Update Formulas

With the help of the isometry and Yule's Parcor identity, we can derive the

time-update formulas as follows.

Using first the isometry (48) and then Yule's identity (32). we can write

km+i,.9-, = PDr,(Dyt,Dygjm_)

= PU((w)x,(t-M-1)x)

P1 V.Xj(Y9 ,Nt-,n -1)

= Fjp .(y . ,-,).p ,(y, .X).p .(y, -,,,-,X)g

= Fjkm +,17nt,/,-i (49)

where we have defined

77.,S = pj(yg,z) and ,.,,= pV(yt_,nZ) (50)

We can readily obtain recursions for these quantities as well. Thus

mu= Pj ,_._,. l(t ,x)

=FlP yV,z),P './(t,--,-).P yt, -- )I

= F17m j. km+.j,,/4,,-,1 (51)

-19-



and finally,

= ,+.k,+,,. (52)

Equations (49), rewritten to express km+i.t in terms of kmn+.ti. combined

with equations (51)-(52) are just the time-update formulas presented earlier in

Section I. Note how immediately they follow from the isometry and Yule's iden-

tity.

3.4 Application to the Time-Series Pre-Windowed Case

In this section, we shall apply the theory developed so far to a deterministic

least-squares problem, studied by Morf, Vieira and Lee (1977) and Lee, Morf and

Friedlander (19131).

(i) Statement of the Problem

Given a series of samples

y(0),y (1)..... ..y (N)

in the so-called pre-windowed method, we try to fit an nth order autoregression

to it by choosing coefficients .a1,.. a, to minimize the following quantity:

2 (tl( )

en (53)

where

e(t) - (t) + aly(t - 1) + '" + a1 j(t - n) (54a)

with

V#(-k) = 0. k€ L- 1 (54b)

The assumption (54b) means that we are assuming that samples prior to

- 20 -



t=O are zero, hence the name "pre-windowed". The residuals e.(t) can be writ-

ten in a matrix form as below:

L0 0 v(0) y (1) V (N-n)

(a. ... al l] ' 6 .
0 '(

- [e.(0) ... en(N)] (55a)

or more compactly

A. ' Y(n) = enjV (55b)

The solution to ou r, .ir mization problem can then be seen to be the solution of

the normal equations.

A.R. = [0 ... R.] (56)

where

Rn = Y(n)Y°(n) and R = rin en(t) = 11I,,..I F
t=0

Note that Rn will not in general be a Toeplitz matrix (unless, in fact,

iV(N-n + i) = 0 = ... = y(IV)).

(ii) Solution of the Problem

We can cast this deterministic least-squares problem into our previous Hu-

bert space framework as follows:

Define our Hilbert space elements as row vectors

yt = [0 ... 0 y (0) ... y(t)] for 0-t !-N (57)

of some fixed length T, T > N. And take as inner products,

<Yt.'YS> VC -I " .,

[0 '' 0 Y(0) (t)][0 .. 0 Y(0) ... Y(s)]"

- 21 -



F --........ -- 7 - ... .. _ iq

= "(t-i)y'(S-0) (58)
t=O

where tAs stands for the smaller of t and s. Then. we see from (55a) that

choosing 1, a,...a to minimize e 21t) is equivalent to finding the best
8 =0

prediction of the Hilbert space vector YN given n earlier vectors

IyN-1, ..... YjV-.f-

We can now use our earlier general result as follows: First, we must find the

displacement rank a and the pinning vector X. By our definition of inner pro-

duct, we have

Rowu

Thus,

--IRo:N = Ro:N - ZRO.NZ °

= [y, : - Y,- Y -I]..=o:. y-, 0 for i ! 1 (59)

Note that the expression in the square brackets denotes the (t,s)-th element of

-RE:u, with t and s taking values from 0 to N as indicated in the sub-

script. Substituting yj := [0 . 0 y(O) ... y(t)], we get

-IRoj, = [y(t)y°(s) - V(t-T)y°(s-T)]==:,v

= [y(t)y°(s)],.,=.j since y(-i) = 0 for i t 1 . (60)

Consider the following nxn submatrix of -Ro:N, denoted briefly as

[-IR]N,:N:

[-I RIN-,,:N = [1 (t)Y'(S)] .s=N-n:N

[y(N-n) [1][y*(N-n) ... y*(N)]

L( 1 1[y v)



= GN-n: ' " ,-n:N . say,

We see that the displacement rank, which equals the dimension of E. is

a=i (62)

Also that the pinning vector is

x = [0 ... 0 ], (63)

because

. . .... y;,]. X> = [y*(N-n), ... , V'(])]"

- GN -_:lN

With ja.Xj, we can, as before, build a lattice filter with n sections, where the

(m.+l)-th section has reflection coefficient

km+,.,= pY(yt'Yy-,-,) U = _. -

To update this quantity, we need j7j4j where

7m.t = pj(ytX) and n.,mj-i = prj(y _.-m,X)

In the present problem

<yj,X> = y(t) and <ygm_,,X> = y(t-m-1) (64)

Then some calculation will show that

17., = m(t).c *J.., = l fm(t-1).c (65)

where the proportionality factor c arises from the absence of a scaling factor

(corresponding to a so called second normalization in Lee et al. (1981)). The

point really is that the lattice sections need only to propagate the sample values

Em(t), f;.(t-1)1 and not the row vectors im.g, r..-d We refer to the paper

of Lee et al. (1981) for further details on the prewindowed lattice form.
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4. GENERAIZED SCHUR ALGORITHMS AND TIME INVARIANT LATICE FILTERS

We shall begin by considering tests for positivity (positive-definiteness) of a

given matrix, starting with Toeplitz matrices, which can arise as covariance

matrices of stationary processes. A simple test is shown using Schur

coefficients (= reflection coefficients) obtained via the standard Schur algo-

rithm. Then a generalized Schur algorithm will be developed yielding general-

ized Schur coefficients which will give positivity tests for non-Toeplitz matrices.

Then, the interpretation of the Schur algorithm is given, using concepts of spec-

tral functions and Schur invariance. Later, we shall consider these results in the

context of nonstationary process, and discuss prediction filters and the general-

ized Szeg6-Levinson algorithm. We shall briefly also mention orthogonal polyno-

mial and Christoffel-Darboux formulas.

4.1 Positivity of Toeplitz Matrices

Consider a stationary stochastic process jYg with an associated Toeplitz

covariance matrix

Ro R, R2 . RN
R.
R 2

RO:N . Ro = 1

R,

There are many criteria for testing whether a given matrix is positive

definite, based on computing eigenvalues or by reduction to a sum of squares,

etc., but we are seeking more special tests that exploit the special (Toeplitz)

structure of the matrix. Such tests are in fact available, based on certain

function-theoretical characterizations first developed in the early part of this

century.

Let us temporarily assume that we have an infinite sequence

-24-



and define a function (assuming R 0 = 1)

C(z) = 1 +2 Rz. (66)

Then we have the following characterization.

Lemma (Caratheodory (1910)): The matrices JR.:N, N = , .... will be nonne-

gative definite if and only if C(z) is analytic and has nonnegative real part in

the unit disc.

Testing if Re C(z)-O can be replaced by the generally simpler problem of

testing for boundedness by making the transformation

S(z) = [1 - C(z)][1 + C(z)] -  (67)

Then it is not hard to see that C(z) is analytic and ReC(z) 0 in Jz i1 if

and only it

S(z) is analytic and IS(z) 11 in -z 1 1. (68)

Such a function will be called a Schur function.

Lemma: (Schur (1917)): Let So(z)=S(z) and define

- 1 Si(z) - Si(O) (69)Z 1 - St(OQ(Z)

Then S(z) is a Schur function if and only if JS(z)j are also Schur functions.

Furthermore, let us define what we shall call Schur coefficients

k1 4 1=S,(o) (70)

Then S(z) is a Schur function if and only if Ikjl51 for li o.

These ctjl are in fact the reflection coefficients used to construct the

time-invariant filter for a stationary process (cf. Section 2), a connection first
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noted by Dewilde, Vieira and Kailath (1976).

Some examination will show that the computation of k,. 1_i iNj, needs

knowledge only of jR 0=,R,...Rj and that therefore we in fact have a test for

any finite matrix RO:N:

RO;N 0 if and only if IJ k 1 i. 1-i!9N (71)

Moreover, further reflection will show the reasonableness of the following result

and corollary.

Theorem: The covariance matrix RO:N can be extended by adding terms

jR, i>Nj corresponding to added reflection coefficients

ki,. such that k, ].I1, i>N.

Corollary: The 'maximum entropy" extension is achieved by the choice

jk, =0, i >NJ

Before leaving this section. we remark that the reflection coefficients

k, 1:r -iNj can be computed by operations on the first N coefficients of the

functions [1+C(z),1-C(z) . in particular on the matrix

1 0
R, -R,
R 2  -R 2

GOIN=

: N -RN

The details of the algorithm will be shown later (Section 44).

4.2 Positivity of Non-Toeplitz Matrices

Suppose now that the process is not stationary so that,

<YI- Y8,>O <V& -,,-,> •

Then the associated covariance matrix will not be Toeplitz and we might ask how

- 26 -
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we could extend the previous tests for the positive definiteness of Rcv We

could try to introduce Caratheodory and Schur functions of 2-variables. For

example,

C(z,w) = R 0.0 + 2 R,. i (72a)

; =1 i j i

Rc.o - C(z,)(
R 0 .0 + C(z,a) (72b)

But, nothing satisfactory seems to have been found in this way, at least so far

However, we shall show that the concept of displacement ranks and

differential generators, as introduced in Section 3.2, does allow us to make pro-

gress.

4.3 Differential Generators of R:

We recall from Section 3.2 that we can then write, for nonunique GCN,

-I Row = RO:N - Z RovZ" = Go.v E Ggv (73)

where G0o, is an (N+l)xa matrix with rows Jgo,g ... gNj, say, and E is a sig-

nature matrix for _1Rc.,v,

G0:jV is nonunique, because any product Gc.N U with a E-unitary matrix U

will also satisfy (73). One consequence is that we can always choose, for conveni-

ence,

go=[Rd.'J 0 ... 01. (74)

This choice is a natural one because the reader can check, it allows us to make

the first column of GCo.N identical to the first column of RON. If for some reason

we have a generator without this property, an appropriate E-unitary matrix U

can also be chosen to ensure it--we shall give the precise construction a little
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later (see Sec. 4.4. Step 1b).

Having GO.N, we can now associate a complex function of a single variable

with a non-Toeplitz matrix R,

G(z) = gzi + O(zN+1) (75)

Note that this function is unlike the extended Caratheodory/Schur functions,

which are functions of two variables. To gain some insight into this function

G(z), let us examine it for the stationary case.

G(z ) in The Toeplitz Case

When RcN is Toeplitz, we see that

Ro0 1  RN 0 0. 0
R, R. 0 R R,

-i Ro:x = #""

RN . , Rc 0 ,, .. o

Ro .)RN

(76)

Therefore a=2, q+=q-=l and

1
We can also check that
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Ro 0

R, -R,
G R2  -R2

Go:.N R (77)

RN -RNJ

satisfies _ Ro:,v=Go:N GTj_. Assume Ro=l. Then, recalling the definition of

the Caratheodory function,

C(z) = 1 + 2 Riz + o(ZN+1)

we see that

G(z)= 1+ C(z) 1 - C(z)
2 2 "

Note that the entries of G(z) are precisely those defining the Schur function

S(z) in the Toeplitz case, which was introduced in a rather mysterious way

then. Here a clue begins to appear to establish a positivity-test for the non-

Toeplitz covariance matrix. For reasons of space we shall forego examination of

how the Schur algorithm in the stationary case can be recast in terms of G(z);

instead we shall directly present the (very easy to describe) general Schur algo-

rithm:

4.4 General Schur Algorithm

In the non-Toeplitz case, G(z) will not have any such striking form as in

(53), but it will nevertheless turnout to yield generalized Schur coefficients in a

nice way. Also the procedure includes the special method for the Toeplitz case.

Note first that in the general case, GC:N will have a-columns, which we partition

as follows:

raoIO 0

Go:N = l (78a)
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Here we have exploited the nonuniqueness of Go.N to make the first row

[O 0 0], where

Roo = a2= gog >0o (78b)

In a corresponding way, we partition E as follows:

E110 (79a)

where

-J 0 -;1 (79b)

Thus E and J are axa and (a-1)x(a-1) matrices. In order to present the

Schur algorithm, we need a further definition.

-Unitary Matrices: Matrices of the following type play an important role in the

ensuing theory:

e(K.J) = 1(1 KJKr 1 1 2  0 -k 1 (50)0 (J - K K) - 11 2  _K ,,-._1

We can verify that

E ) E" = E (8)

thus being called -unitary matrices. In fact, it can be shown that an arbitrary

E-unitary matrix will have the form

ul U231(KJ) where U, is unitary and U2 is J-unitary . (82)

The Generalized Schur Algorithm:

Start with G0 :N in the 'proper' form, i.e., such that the first row go of

GO:N is of the form
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go=[Oo 0 0]. ag> .

Step Ia. Shifting: Form a matrix G(') with one less row than G by shifting up

the rows ri.

71 2

~"=L1 i ~(83)

On

G(z) = gz

this operation amounts to forming

G€,(z) = G(Z) (84)

Step lb. Renormalization: Find O(K1,J) so that G ('O-r(K,J) is again proper,

i.e.,

a, 0 ... 0

GO,) = G0€)e-1(KJ) - (85)

we shall show that this can be achieved by chocsing

K, = -uaT'1J . (86)

Proof of (86): From (85) we need O(K1,J) to be such that

the 1st row of G(1)=[o, 0 0])(K,J)

= o 1st row o! G(K1,J)

= U1(1 - KJK")-'12[1 -K.]

Comparing with (83), we get
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a0 = Or(1 - KIJK) - " 2 and 1 = - aoKIJ Hence ....

Steps U1. Ill. etc: The two steps as before, namely, shifting and renormalization,

are repeated until Gcm) is a matrix with all columns zero except, perhaps, for

the first column. At this stage, no more renormalization is required and all

future J K will be zero. Note that mr! N, the size of the original matrix and if

m=N. G (N) will consist of only a single row.

In this way , we can associate a set of 1x(a-'.) vector coefficients

jKj,K2 -.KNJ with GO:N and hence with Rrp.i. The following result holds.

Theorem: The matrix RC:N is positive-definite if and only if the set of Schur

coefficients associated with it satisfy

I-K JK>0 for i=1.. N (87)

In the Toeplitz case a=2, J=1 so that KI4 have to be scalars of magni-

tude less than one, as we stated earlier. We have a striking generalization here.

We shall not give a formal proof of this theorem here, but we shall outline

the underlying ideas in the next section.

4.5 Interpr$tation of Schur Procedure

The theorem rests mainly on the concept of Schur complements and a

lemma due to Schur. Let us write R,., as,

.R. [0 .R : = • R g [R . "' R * $] + a (88)

Then A is called the Schur complement of R,.. in R. Then the following result

is easy to see.
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Lemma: R is positive definite if and only if R... > 0 and the Schur comple-

ment of R., in R is positive definite.

The following reformulation of this fact will be useful. Let us define

S(Z,W) Rj.jziW1(8)= I 89

If R = [Rij] is positive definite, this function will be said to be the two-

dimensional spectral function of the process. (Caution: The spectral function

S(zw) must not be confused with the two dimensional Schur function S'z.)

suggested in (72)). Then we can restate the lemma as follows:

Lemma: The function S(z.,) associated with R is a spectral function if and

only if S(0,0) = Ro.o > 0 and Sj(z,u) is also a spectral function, where

S(z) = S(Z,C) - S(z,O)S-'(OO)S(O,) (90)
z c

The reader should check, by comparing coefficients of z w'Y that Sl(z.w)

indeed represents the Schur complement A in the transform domain.

The above lemma may be extended to the "ARMA case" readily, which we do

here in order to bring out connections to the paper of Dewilde in this volume.

ILmma (Schur-ARMA): Let "a" be point in the domain of convergence of

S(z.c). Then S(z,w) is a spectral function if and only if S(aa) > 0 and

Sj(z ,w) is also a spectral function, where

S(z,.c) - S(z,a)S-(a(,t)S(a,c) (91)
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These lemmas are of little practical use as it is. because computation of

Sl(z,w) from S(z ,) is not efficient. So. we now try to impose a certain struc-

ture on S(z,w), which will hopefully enable us to perform recursions on some

simpler function than S(z,c).

a. Schur Invariance:

First, let us look for a S(z,c) that remains unaltered under Schur comple-

mentation, i.e., such that

Si(zr.) = S(z,) (92)

Substituting this into (91) gives, after some algebra, the fact that

(1-zw')S(z,w) = G "z)G. () (93a)

where

G.(z) = (i -z)s(za)(93b)
(1 - la 12)1/ 2

Let us pause a little here to examine the AR-case. Then a = 0. and (93)

becomes

(1 - zw')S(z.w) = G(z)G*(w) (94)

where

G(z) = S(z.0)S-V2 (0.0)

In the "time-domain", (94) translates to the relation

R - ZRZ = GG °  (95)

Processes satisfying (94), i.e., such that

S(z.,f) = G(z) 1 _ * G,(c) (96)

have a simple interpretation. Consider "one-sided" white noise Juk. k L 01
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such that Eutu,7 = 1 6 k. Its spectral function is

S. (z c ) = 2 6,jz i C - 1 (97)
j=0 1 -Z .*

Now the process in (96) can be interpreted as the nonstationary process

obtained by putting "one-sided" white noise through a time-invariant filter with

transfer function G(z). These are perhaps the simplest kind of nonstationary

processes, with displacement rank a = 1.

Let us now return to our main problem, of imposing certain useful struc-

ture on the processes to be considered. Our earlier condition that S(z,w)

remain unaltered under Schur complementation, which resulted in S(z,w) tak-

ing the form in (96), can be generalized as follows:

Let

S(Z,W) = 1 - " (98)

where G.(z) will be required to be "proper" in the sense that

G. (a) = a[! 0 0] (99a)

and

a, - a 12) (99b)

The Schur complement is given as below for the ARMA-case:

s1(z. ) = S(z,.) - S(za)S-'(aa)s(a,.)

Substituting (98) into the expression (91) shows that Sj(z,) must have the

form

Sa(Xo) = G,(z)ZG*(w) (100a)
1 -ZW*
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where

[1 0 -
G(z)- G.(z) E-'(Kl.J) (1Ob)

where K, is such that

G,(a 2 ) = ... 0] (1OOc)

Thus by considering processes whose spectral function can be written as in

(100a) we are able to reduce recursions of S(za) to recursions on G(z). The

G-recursions are related through G-matrices. So, we can continue this above

procedure by extracting 0-sections at a 2 , aq, Note that after one step, we

have

1 0
G(z) = G(z) O(KJ) (101a)

1 -a 1.-

SG(z) . 01(z) (101b)

The process will be finite order if

G(z) '9j 1 (z) -G(z) = Gy/z)[1 0 ... b] for M < -. (102)

We shall make this assumption for convenience, although it is not essential.

Thus,

G(z) = Gm(z)[1 0 ... 0]O0(z) ... 01(z) (103)

Note that the product of E) matrices is again a --lossless matrix.

b. Congruence:
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Here we will show that the Schur coefficiens; 14 (and hence 0 - sections)

do not uniquely determine a process. In tact, let h(z) be analytic and inverti-

ble in some region containing the points a,, a2, ... rz1j. Then G(z) and

h(z)G(z) have the same Schur coeqicients. For,

h(z)G(z) = [h(z)-y(z) h(z)P(z)]

and since we work with ratios, it is suggestive that the Schur coefficients will be

the same. So, G(z) and hlz)G(z) are said to be congruent. The following

lemma shows the relation between covariance matrices of congruent processes.

Lemma: If G(z) is replaced by h(z)Glkz), i.e., G(z) -h(z)G(z), then the

covariance matrix is transformed as:

h. 0

R.:N -L(h)]Ro:NL*(h) L(h). .(:)

hNv ho

Proof. In the time domain,

0(z) -~ h(z)G(z) ,implies that G - L~h)G

Now from

we can writeR- 
R =G '

LRL* - LZRZ*L* = LGEG*L

Since ZL = LZ, we have

LRL' - Z(LRL')Z' = LGEG-L

which shows that, under congruence of the generators, we have congruence of

the covariance matrices, i e.,
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R - LRL'

Since the K-coefficients define a covariance only up to congruence, we shall now

consider a canonical representative.

c. Canonical Representative:

It can be shown that every generator G(z) can be fr-t-sforTfied by a

congruence into a canonical form.

O(z) := [1 0 ... 0]9.U(z) 0 1(z) (105)

Note that 0(z) is completely determined by the Schur coefficients.

So far we have spoken only of tests for positivity and of the generalized

Schur coefficients. Through the canonical generators we shall be able to relate

these to the prediction or whitening filters that define the residuals jer.t J.

4.6 Innovations FlIters and Generalized Orthogonal Polynomials

As we just stated there is a transformation relating G(z) to e(z), which

we can write as,

a(z)G(z) = Z(z) (106a)

Let Go:,, denote the first m rows of Go: . Then we can find a polynomial

am(z) of degree mr such that

am(z) • G(z) = Zm(z) + O(zm+)

We shall write this as

a,,(z)G(z)T E_ ,(z) (1 06b)

where 2 denotes equality of the first n terms. Then after some calculation,

for which we refer to the thesis of Lev-Ari (1982), we can claim the following.
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THEORIM- The function am(z) defines the innovations filter at time t = m.

This theorem does not indicate how to actually compute the am(z)j. To do

this conveniently, we introduce the concept of admissibility.

ADMISSIBILITY: A generator G(z) is called X-admissible if

1(z)X 1 (107)

where X is a vector of dimension a, i.e.,

go X., 1
• . 0

[Lerer and Tismenetsky (1951) introduced similar constraints to study general-

ized Bezoutians.] We know that

a~r(Z)G(Z)

Multiplying both sides by X, and using 07) gives us am (z) as

am(z)= m(Z(z)(1
= [1 o ... o]O ,Z) ... (108)

We can represent this in block diagram form as shown in Figure 4. Each section

in this cascade structure has the generalized lattice form shown in Figure 3.
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.... ,

Figure 4. Generalized Lattice Filter with Time-InvarianLt Sections

Orthogonal Polynomials

The theorem that the a,(z) define the prediction-error filters means that

they have certain orthogonality properties. In fact, they turn out to be natural

extensions of the Szegb polynomials orthogonal on the unit circle (see, e.g.,

Geronimus (1961). Kailath, Vieira and ,orf (1978)). If we denote the other out-

puts from the cascade 0gmn(z) .. (z) by C(z), an 'c-l)-dimensional vector,

then we clearly have the recursive updating formula

Fa(Z) = 0 (z I (109)

which generalizes the well known Szego recursion formula. The formula (109) is

(a slight generalization of) the generalized Levinson recursions obtained by

Friedlander, Kailath, Morf, Ljung (1978), (1979). The present derivation is much

more transparent, and in fact it was in large part the search for such a simple

derivation that led to the studies preserited here.
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Christoffel-Darboux Formulas

With orthogonal polynomials, we always have the so-called Christoffel-

Darboux formulas, which give expressions for R'. In our case, we have the fol-'

lowing generalized forms.

Let

Km(z.rJ) := 1 z zm]Rj- 4i , . (110)

and also define the "reciprocal polynomial" by

(Z) = z"[) " ((1/)

Then we can establish the generalized Christoffel-Darboux formulas,

K.(z,cj) = Z a(z)a,'()) (112)
i=0

- m~()&+i~) C 4 (zJ+(c)+ \.X (-3)

The only surprising thing about this generalized formula is the presence of the

term X*EX. Some light will be shed on this in the next subsection.

4.7 More on Generators and Admissibility

Now we address ourselves to the question, can we always find admissible

generators? The answer is essentially 'yes', which we shall elaborate now. First,

we note the concept of equivalence and certain results due to Livsic (1979) and

Potapov (1960). Equivalent generators JGI,E.B and JG2,rZj are such that

R - Z R Ze = GIEIG* = G2E 2 G2

The following results are an adaptation of results proved by Livsic and Potapov.

1. All minimal generators are related by E-unitary matrices.
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2. In general, all generators can be obtained from any minimal generator by

some combination of certain elementary operations (called trivial le1gthen-

ings, neutral lengthenings, and E-rotations).

Now let us consider the problem of finding admissible generators. It turns

out that we have three distinct cases, which in fact give a classification of covari-

ances into three distinct types: Let us define the index of non-Toeplitzness of R

as first introduced in Friedlander et al (1978) to be (see (114) below)

6 = rank [Rt, - R_-] -i

It is easy to see that (a-6) can be 2. 1 or 0, where of course a is the dis-

placement rank.

Theorem: Let R-Z R Z':GEG" where G is a minimal generator. Let

G(z) = gjz'

Then for every minimal generator, if

(i) a-6=2, there exists a X such that G(z),=l and AX*E=0. An example is

the Toeplitz case, where X=[i -1].

(ii) a-6=1, there exists a X such that G(z)X=l, but X*EX;e0

(iii)a-6=0, there exists no X such that G(z)=1. However, by increasing the

dimension to (6+2), we can always find a G that is admissible, with any

desirable X. An example is the pre-windowed least-squares problem of Sec.

3.4.

Remark: The class of covariances satisfying a - 6 = 2 deserves the name

quas-istationary or close to stationary. The simplest members in this class

areindeed, Toeplitz covariances, and for any other member the distance from
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stationarity is indicated by the index of non-Toeplitzness 6 = a - 2. Notice also

that the surprising term X°2X which appeared in (113) vanishes for covariances

in this class.

Construction of an Admissible Generator

We shall give a method of constructing an admissible generator, though it

may not necessarily be minimal. Let

rRO0 Rc. . Ro.N

R-ZRZ"= (114)

we write A as,

A D 1:vcD[.v

where ZO has dimension 6x6. Now define,

Roo0o ... 0 0
R1.0  -RI.o

GO;N D I where R, 0 = R-,'2 R. 0

IRNO0-R~

and

ooi
0 -*

Q-,EQ,,*:N R -ZRZ "

0 0

10
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thus making G.eN an admissible generator, with X = [1 0 0 -1].

Remark: Note that this construction matches the statement in the theorem

when a - 6 = 2 or a - 6 = 0. It is however, nonminimalif a - 6 = 1.

4.8 Concluding Remarks

We have given an outline of the general theory of lattice filters for nonsta-

tionary processes, emphasizing how the displacement structure of the covari-

ance can be used to obtain different kmnds of implementations. We find it fas-

cinating that the displacement rank ccncept provides such technologically

significant generalizations of the several classical results of Schur and Szego,

obtained without any idea of practical app'_cations.
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ITEM #20, CONTINUED: coefficient of size governed by the displacement rank of
proce;ses.

These :esults are obtained in a quite direct way oy using a geometric (Hilbert-

space) formulation of the problem, combined with old results of Yule (1907) on
update formulas for partial correlation coefficients and of Schur (1917) on the
classical moment problem.

F-

I;

L.
I

UNCLASSIFIED
StCUNITY CLASSMPiCAT10% OP I-,- PAG(Wn Date Kf"r0,e

W.W.W VIM , W



!1


